Protein exposure to oxidants such as HOCl leads to formation of methionine sulfoxide (MetSO) residues, which can be repaired by methionine sulfoxide reductase (Msr). A Helicobacter pylori msr strain was more sensitive to HOCl-mediated killing than the parent. Because of its abundance in H. pylori and its high methionine content, alkyl hydroperoxide reductase C (AhpC) was hypothesized to be prone to methionine oxidation. AhpC was expressed as a recombinant protein in Escherichia coli. AhpC activity was abolished by HOCl, while all six methionine residues of the enzyme were fully to partially oxidized. Upon incubation with a Msr repair mixture, AhpC activity was restored to nonoxidized levels and the MetSO residues were repaired to methionine, albeit to different degrees. The two most highly oxidized and then Msr-repaired methionine residues in AhpC, Met101 and Met133, were replaced with isoleucine residues by site-directed mutagenesis, either individually or together. E. coli cells expressing variant versions were more sensitive to t-butyl hydroperoxide than cells expressing native protein, and purified AhpC variant proteins had 5% to 39% of the native enzyme activity. Variant proteins were still able to oligomerize like the native version, and circular dichroism (CD) spectra of variant proteins revealed no significant change in AhpC conformation, indicating that the loss of activity in these variants was not related to major structural alterations. Our results suggest that both Met101 and Met133 residues are important for AhpC catalytic activity and that their integrity relies on the presence of a functional Msr.
Publications
2013
2012
Interactions between proteins and glycosaminoglycans (GAGs) of the extracellular matrix are important to the regulation of cellular processes including growth, differentiation and migration. Understanding these processes can benefit greatly from the study of protein-GAG interactions using GAG oligosaccharides of well-defined structure. Materials for such studies have, however, been difficult to obtain because of challenges in synthetic approaches and the extreme structural heterogeneity in GAG polymers. Here, it is demonstrated that diversity in structures of oligosaccharides derived by limited enzymatic digestion of materials from natural sources can be greatly curtailed by a proper selection of combinations of source materials and digestive enzymes, a process aided by an improved understanding of the specificities of certain commercial preparations of hydrolases and lyases. Separation of well-defined oligosaccharides can then be accomplished by size-exclusion chromatography followed by strong anion-exchange chromatography. We focus here on two types of chondroitin sulfate (CS) as starting material (CS-A, and CS-C) and the use of three digestive enzymes with varying specificities (testicular hyaluronidase and bacterial chondroitinases ABC and C). Analysis using nuclear magnetic resonance and mass spectrometry focuses on isolated CS disaccharides and hexasaccharides. In all, 15 CS hexasaccharides have been isolated and characterized. These serve as useful contributions to growing libraries of well-defined GAG oligosaccharides that can be used in further biophysical assays.
Unlike small molecule drugs, therapeutic protein pharmaceuticals must not only have the correct amino acid sequence and modifications, but also the correct conformation to ensure safety and efficacy. Here, we describe a method for comparison of therapeutic protein conformations by hydroxyl radical protein footprinting using liquid chromatography-mass spectrometry (LC-MS) as an analytical platform. Hydroxyl radical protein footprinting allows for rapid analysis of the conformation of therapeutic proteins based on the apparent rate of oxidation of various amino acids by hydroxyl radicals generated in situ. Conformations of Neupogen®, a patented granulocyte colony-stimulating factor (GCSF), were compared to several expired samples of recombinant GCSF, as well as heat-treated Neupogen®. Conformations of different samples of the therapeutic proteins interferon α-2A and erythropoietin were also compared. Differences in the hydroxyl radical footprint were measured between Neupogen® and the expired or mishandled GCSF samples, and confirmed by circular dichroism spectroscopy. Samples that had identical circular dichroism spectra were also found to be indistinguishable by hydroxyl radical footprinting. The method is applicable to a wide variety of therapeutic proteins and formulations through the use of separations techniques to clean up the protein samples after radical oxidation. The reaction products are stable, allowing for flexibility in sample handling, as well as archiving and reanalysis of samples. Initial screening can be performed on small amounts of therapeutic protein with minimal training in LC-MS, but samples with structural differences from the reference can be more carefully analyzed by LC-MS/MS to attain higher spatial resolution, which can aid in engineering and troubleshooting.
2011
Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide reductase (Msr). Catalase is an important antioxidant enzyme; we show it constitutes 4-5% of the total Helicobacter pylori protein levels. msr and katA strains were about 14- and 4-fold, respectively, more susceptible than the parent to killing by the neutrophil cell line HL-60 cells. Catalase activity of an msr strain was much more reduced by HOCl exposure than for the parental strain. Treatment of pure catalase with HOCl caused oxidation of specific MS-identified Met residues, as well as structural changes and activity loss depending on the oxidant dose. Treatment of catalase with HOCl at a level to limit structural perturbation (at a catalase/HOCl molar ratio of 1:60) resulted in oxidation of six identified Met residues. Msr repaired these residues in an in vitro reconstituted system, but no enzyme activity could be recovered. However, addition of GroEL to the Msr repair mixture significantly enhanced catalase activity recovery. Neutrophils produce large amounts of HOCl at inflammation sites, and bacterial catalase may be a prime target of the host inflammatory response; at high concentrations of HOCl (1:100), we observed loss of catalase secondary structure, oligomerization, and carbonylation. The same HOCl-sensitive Met residue oxidation targets in catalase were detected using chloramine-T as a milder oxidant.
CCL5 (RANTES) is a proinflammatory chemokine known to activate leukocytes through its receptor, CCR5. Although the monomeric form of CCL5 is sufficient to cause cell migration in vitro, CCL5's propensity for aggregation is essential for migration in vivo, T cell activation and apoptosis, and HIV entry into cells. However, there is currently no structural information on CCL5 oligomers larger than the canonical CC chemokine dimer. In this study the solution structure of a CCL5 oligomer was investigated using an integrated approach, including NMR residual dipolar couplings to determine allowed relative orientations of the component monomers, SAXS to restrict overall shape, and hydroxyl radical footprinting and NMR cross-saturation experiments to identify interface residues. The resulting model of the CCL5 oligomer provides a basis for explaining the disaggregating effect of E66 and E26 mutations and suggests mechanisms by which glycosaminoglycan binding may promote oligomer formation and facilitate cell migration in vivo.
Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS(n). The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS(n) fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS(n) experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS(n) methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.
2010
Analysis of protein oxidation is necessary in numerous areas of biochemistry, including hydroxyl radical surface mapping, oxidative stress assays, and pharmaceutical stability testing. Mass spectrometry is one of the tools most often used to identify protein oxidation products, and previous studies have attempted to identify and characterize all of the major oxidation products detected by mass spectrometry for each amino acid residue. In this note, we present evidence that in heavily oxidized protein samples, such as those produced by hydroxyl radical surface mapping, a major oxidation product of methionine is homocysteic acid. The formation of homocysteic acid from methionine was previously unrecognized in other mass spectrometric analyses, and has important implications for the analysis of oxidized samples, as well as potential implications as to the functional consequences of methionine oxidation.
Characterization of glycosaminoglycans (GAGs), including chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate (HS), is important in developing an understanding of cellular function and in assuring quality of preparations destined for biomedical applications. While use of (1)H and (13)C NMR spectroscopy has become common in characterization of these materials, spectra are complex and difficult to interpret when a more heterogeneous GAG type or a mixture of several types is present. Herein a method based on (1)H-(15)N two-dimensional NMR experiments is described. The (15)N- and (1)H-chemical shifts of amide signals from (15)N-containing acetylgalactosamines in CSs are shown to be quite sensitive to the sites of sulfation (4-, 6-, or 4,6-) and easily distinguishable from those of DS. The amide signals from residual (15)N-containing acetylglucosamines in HS are shown to be diagnostic of the presence of these GAG components as well. Most data were collected at natural abundance of (15)N despite its low percentage. However enrichment of the (15)N-content in GAGs using metabolic incorporation from (15)N-glutamine added to cell culture media is also demonstrated and used to distinguish metabolic states in different cell types.
2009
Fast photochemical oxidation of proteins (FPOP) is a chemical footprinting method whereby exposed amino-acid residues are covalently labeled by oxidation with hydroxyl radicals produced by the photolysis of hydrogen peroxide. Modified residues can be detected by standard trypsin proteolysis followed by LC/MS/MS, providing information about solvent accessibility at the peptide and even the amino-acid level. Like other chemical footprinting techniques, FPOP must ensure only the native conformation is labeled. Although oxidation via hydroxyl radical induces unfolding in proteins on a time scale of milliseconds or longer, FPOP is designed to limit (*)OH exposure to 1 micros or less by employing a pulsed laser for initiation to produce the radicals and a radical-scavenger to limit their lifetimes. We applied FPOP to three oxidation-sensitive proteins and found that the distribution of modification (oxidation) states is Poisson when a scavenger is present, consistent with a single conformation protein modification model. This model breaks down when a scavenger is not used and/or hydrogen peroxide is not removed following photolysis. The outcome verifies that FPOP occurs on a time scale faster than conformational changes in these proteins.
Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation, which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues.