Publications

2022

Mitra, S.; Talukdar, K.; Prasad, P.; Misra, S. K.; Khan, S.; Sharp, J. S.; Jurss, J. W.; Chakraborty, S. Rational Design of a Cu Chelator That Mitigates Cu-Induced ROS Production by Amyloid Beta.. Chembiochem : a European journal of chemical biology 2022, 23 (4), e202100485. https://doi.org/10.1002/cbic.202100485.

Alzheimer's disease severely perturbs transition metal homeostasis in the brain leading to the accumulation of excess metals in extracellular and intraneuronal locations. The amyloid beta protein binds these transition metals, ultimately causing severe oxidative stress in the brain. Metal chelation therapy is an approach to sequester metals from amyloid beta and relieve the oxidative stress. Here we have designed a mixed N/O donor Cu chelator inspired by the proposed ligand set of Cu in amyloid beta. We demonstrate that the chelator effectively removes Cu from amyloid beta and suppresses reactive oxygen species (ROS) production by redox silencing and radical scavenging both in vitro and in cellulo. The impact of ROS on the extent of oxidation of the different aggregated forms of the peptide is studied by mass spectrometry, which, along with other ROS assays, shows that the oligomers are pro-oxidants in nature. The aliphatic Leu34, which was previously unobserved, has been identified as a new oxidation site.

Akbar, S.; Phillips, K. E.; Misra, S. K.; Sharp, J. S.; Stevens, C. Differential Response to Prey Quorum Signals Indicates Predatory Specialization of Myxobacteria and Ability to Predate Pseudomonas Aeruginosa.. Environmental microbiology 2022, 24 (3), 1263-1278. https://doi.org/10.1111/1462-2920.15812.

Multiomic analysis of transcriptional and metabolic responses from the predatory myxobacteria Myxococcus xanthus and Cystobacter ferrugineus exposed to prey signalling molecules of the acylhomoserine lactone and quinolone quorum signalling classes provided insight into predatory specialization. Acylhomoserine lactone quorum signals elicited a general response from both myxobacteria. We suggest that this is likely due to the generalist predator lifestyles of myxobacteria and ubiquity of acylhomoserine lactone signals. We also provide data that indicates the core homoserine lactone moiety included in all acylhomoserine lactone scaffolds to be sufficient to induce this general response. Comparing both myxobacteria, unique transcriptional and metabolic responses were observed from Cystobacter ferrugineus exposed to the quinolone signal 2-heptylquinolin-4(1H)-one (HHQ) natively produced by Pseudomonas aeruginosa. We suggest that this unique response and ability to metabolize quinolone signals contribute to the superior predation of P. aeruginosa observed from C. ferrugineus. These results further demonstrate myxobacterial eavesdropping on prey signalling molecules and provide insight into how responses to exogenous signals might correlate with prey range of myxobacteria.

Liang, Q.; Sharp, J. S. De Novo Sequencing of Heparin /Heparan Sulfate Oligosaccharides by Chemical Derivatization and LC-MS /MS.. Methods in molecular biology (Clifton, N.J.) 2022, 2303, 163-172. https://doi.org/10.1007/978-1-0716-1398-6_14.

The biological function of glycosaminoglycan (GAG) oligosaccharides is dictated in part by the pattern of modifications (sulfation, acetylation/deacetylation, and epimerization of uronic acids) occurring in oligosaccharide regions of the polysaccharide. The sequencing of the pattern of modifications of glycosaminoglycan (GAG) oligosaccharides is highly challenging due to the heterogeneity of most naturally occurring GAGs. While liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to determine GAG oligosaccharide composition, the high lability of sulfates in the gas phase makes structural interrogation by tandem mass spectrometry (MS/MS) unlikely to yield useful sequence information. Here we describe a method for the chemical derivatization of GAG oligosaccharides that replaces sulfate groups in a site-specific manner. The resulting derivatized GAG oligosaccharides can be chromatographically separated with high efficiency using C18 reversed-phase chromatography and sequenced using standard LC-MS/MS methods.

Harris, H. M.; Boyet, K. L.; Liu, H.; Dwivedi, R.; Ashpole, N. M.; Tandon, R.; Bidwell, G. L.; Cheng, Z.; Fassero, L. A.; Yu, C. S.; Pomin, V. H.; Mitra, D.; Harrison, K. A.; Dahl, E.; Gurley, B. J.; Kotha, A. K.; Chougule, M. B.; Sharp, J. S. Safety and Pharmacokinetics of Intranasally Administered Heparin.. Pharmaceutical research 2022, 39 (3), 541-551. https://doi.org/10.1007/s11095-022-03191-4.

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity.

METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 μg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects.

RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 h, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 h.

CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 h after dosing.

Harris, H. M.; Boyet, K. L.; Liu, H.; Dwivedi, R.; Ashpole, N. M.; Tandon, R.; Bidwell, G. L.; Cheng, Z.; Fassero, L. A.; Yu, C. S.; Pomin, V. H.; Mitra, D.; Harrison, K. A.; Dahl, E.; Gurley, B. J.; Kotha, A. K.; Chougule, M. B.; Sharp, J. S. Safety and Pharmacokinetics of Intranasally Administered Heparin.. medRxiv : the preprint server for health sciences 2022. https://doi.org/10.1101/2021.07.05.21259936.

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity.

METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 μg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects.

RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 hours, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 hours.

CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 hours after dosing.

Khaje, N. A.; Eletsky, A.; Biehn, S. E.; Mobley, C. K.; Rogals, M. J.; Kim, Y.; Mishra, S. K.; Doerksen, R. J.; Lindert, S.; Prestegard, J. H.; Sharp, J. S. Validated Determination of NRG1 Ig-Like Domain Structure by Mass Spectrometry Coupled With Computational Modeling.. Communications biology 2022, 5 (1), 452. https://doi.org/10.1038/s42003-022-03411-y.

High resolution hydroxyl radical protein footprinting (HR-HRPF) is a mass spectrometry-based method that measures the solvent exposure of multiple amino acids in a single experiment, offering constraints for experimentally informed computational modeling. HR-HRPF-based modeling has previously been used to accurately model the structure of proteins of known structure, but the technique has never been used to determine the structure of a protein of unknown structure. Here, we present the use of HR-HRPF-based modeling to determine the structure of the Ig-like domain of NRG1, a protein with no close homolog of known structure. Independent determination of the protein structure by both HR-HRPF-based modeling and heteronuclear NMR was carried out, with results compared only after both processes were complete. The HR-HRPF-based model was highly similar to the lowest energy NMR model, with a backbone RMSD of 1.6 Å. To our knowledge, this is the first use of HR-HRPF-based modeling to determine a previously uncharacterized protein structure.

Ralston, C. Y.; Sharp, J. S. Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods.. Antibodies (Basel, Switzerland) 2022, 11 (4). https://doi.org/10.3390/antib11040071.

Commercial monoclonal antibodies are growing and important components of modern therapies against a multitude of human diseases. Well-known high-resolution structural methods such as protein crystallography are often used to characterize antibody structures and to determine paratope and/or epitope binding regions in order to refine antibody design. However, many standard structural techniques require specialized sample preparation that may perturb antibody structure or require high concentrations or other conditions that are far from the conditions conducive to the accurate determination of antigen binding or kinetics. We describe here in this minireview the relatively new method of hydroxyl radical protein footprinting, a solution-state method that can provide structural and kinetic information on antibodies or antibody-antigen interactions useful for therapeutic antibody design. We provide a brief history of hydroxyl radical footprinting, examples of current implementations, and recent advances in throughput and accessibility.

Cheng, Z.; Misra, S. K.; Shami, A.; Sharp, J. S. Structural Analysis of Phosphorylation Proteoforms in a Dynamic Heterogeneous System Using Flash Oxidation Coupled In-Line With Ion Exchange Chromatography.. Analytical chemistry 2022, 94 (51), 18017-18024. https://doi.org/10.1021/acs.analchem.2c04365.

Protein posttranslational modifications (PTMs) are key modulators of protein structure and function that often change in a dynamic fashion in response to cellular stimuli. Dynamic PTMs are very challenging to structurally characterize using modern techniques, including covalent labeling methods, due to the presence of multiple proteoforms and conformers together in solution. We have coupled an ion exchange high-performance liquid chromatography separation with a flash oxidation system [ion exchange chromatography liquid chromatography-flash oxidation (IEX LC-FOX)] to successfully elucidate structural changes among three phosphoproteoforms of ovalbumin (OVA) during dephosphorylation with alkaline phosphatase. Real-time dosimetry indicates no difference in the effective radical dose between peaks or across the peak, demonstrating both the lack of scavenging of the NaCl gradient and the lack of a concentration effect on radical dose between peaks of different intensities. The use of IEX LC-FOX allows us to structurally probe into each phosphoproteoform as it elutes from the column, capturing structural data before the dynamics of the system to reintroduce heterogeneity. We found significant differences in the residue-level oxidation between the hydroxyl radical footprint of nonphosphorylated, monophosphorylated, and diphosphorylated OVA. Not only were our data consistent with the previously reported stabilization of OVA structure by phosphorylation, but local structural changes were also consistent with the measured order of dephosphorylation of Ser344 being removed first. These results demonstrate the utility of IEX LC-FOX for measuring the structural effects of PTMs, even in dynamic systems.

2021

Tandon, R.; Sharp, J. S.; Zhang, F.; Pomin, V. H.; Ashpole, N. M.; Mitra, D.; McCandless, M. G.; Jin, W.; Liu, H.; Sharma, P.; Linhardt, R. J. Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives.. Journal of virology 2021, 95 (3). https://doi.org/10.1128/JVI.01987-20.

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 μg/liter, 1.08 mg/liter, 1.77 μg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.

Albataineh, H.; Duke, M.; Misra, S. K.; Sharp, J. S.; Stevens, C. Identification of a Solo Acylhomoserine Lactone Synthase from the Myxobacterium Archangium Gephyra.. Scientific reports 2021, 11 (1), 3018. https://doi.org/10.1038/s41598-021-82480-1.

Considered a key taxon in soil and marine microbial communities, myxobacteria exist as coordinated swarms that utilize a combination of lytic enzymes and specialized metabolites to facilitate predation of microbes. This capacity to produce specialized metabolites and the associated abundance of biosynthetic pathways contained within their genomes have motivated continued drug discovery efforts from myxobacteria. Of all myxobacterial biosynthetic gene clusters deposited in the antiSMASH database, only one putative acylhomoserine lactone (AHL) synthase, agpI, was observed, in genome data from Archangium gephyra. Without an AHL receptor also apparent in the genome of A. gephyra, we sought to determine if AgpI was an uncommon example of an orphaned AHL synthase. Herein we report the bioinformatic assessment of AgpI and discovery of a second AHL synthase from Vitiosangium sp. During axenic cultivation conditions, no detectible AHL metabolites were observed in A. gephyra extracts. However, heterologous expression of each synthase in Escherichia coli provided detectible quantities of 3 AHL signals including 2 known AHLs, C8-AHL and C9-AHL. These results suggest that A. gephyra AHL production is dormant during axenic cultivation. The functional, orphaned AHL synthase, AgpI, is unique to A. gephyra, and its utility to the predatory myxobacterium remains unknown.