Publications

2021

Huang, H.; Mao, J.; Liang, Q.; Lin, J.; Jiang, L.; Liu, S.; Sharp, J. S.; Wei, Z. Structural Analysis of Glycosaminoglycans from Oviductus Ranae.. Glycoconjugate journal 2021, 38 (1), 25-33. https://doi.org/10.1007/s10719-020-09962-8.

Oviductus ranae (O.ran.) has been widely used as a tonic and a traditional animal-based Chinese medicine. O.ran. extracts have been reported to have numerous biological activities, including activities that are often associated with mammalian glycosaminoglycans such as anti-inflammatory, antiosteoperotic, and anti-asthmatic. Glycosaminoglycans are complex linear polysaccharides ubiquitous in mammals that possess a wide range of biological activities. However, their presence and possible structural characteristics within O.ran. were previously unknown. In this study, glycosaminoglycans were isolated from O.ran. and their disaccharide compositions were analyzed by liquid chromatography-ion trap/time-of-flight mass spectrometry (LC-MS-ITTOF). Heparan sulfate (HS)/heparin (HP), chondroitin sulfate (CS)/dermatan sulfate (DS) and hyaluronic acid (HA) were detected in O.ran. with varied disaccharide compositions. HS species contain highly acetylated disaccharides, and have various structures in their constituent chains. CS/DS chains also possess a heterogeneous structure with different sulfation patterns and densities. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of O.ran..

Sharp, J. S.; Chea, E. E.; Misra, S. K.; Orlando, R.; Popov, M.; Egan, R. W.; Holman, D.; Weinberger, S. R. Flash Oxidation (FOX) System: A Novel Laser-Free Fast Photochemical Oxidation Protein Footprinting Platform.. Journal of the American Society for Mass Spectrometry 2021, 32 (7), 1601-1609. https://doi.org/10.1021/jasms.0c00471.

Hydroxyl radical protein footprinting (HRPF) is a powerful and flexible technique for probing changes in protein topography. With the development of the fast photochemical oxidation of proteins (FPOP), it became possible for researchers to perform HRPF in their laboratory on a very short time scale. While FPOP has grown significantly in popularity since its inception, adoption remains limited due to technical and safety issues involved in the operation of a hazardous Class IV UV laser and irreproducibility often caused by improper laser operation and/or differential radical scavenging by various sample components. Here, we present a new integrated FOX (Flash OXidation) Protein Footprinting System. This platform delivers sample via flow injection to a facile and safe-to-use high-pressure flash lamp with a flash duration of 10 μs fwhm. Integrated optics collect the radiant light and focus it into the lumen of a capillary flow cell. An inline radical dosimeter measures the hydroxyl radical dose delivered and allows for real-time compensation for differential radical scavenging. A programmable fraction collector collects and quenches only the sample that received the desired effective hydroxyl radical dose, diverting the carrier liquid and improperly oxidized sample to waste. We demonstrate the utility of the FOX Protein Footprinting System by determining the epitope of TNFα recognized by adalimumab. We successfully identify the surface of the protein that serves as the epitope for adalimumab, identifying four of the five regions previously noted by X-ray crystallography while seeing no changes in peptides not involved in the epitope interface. The FOX Protein Footprinting System allows for FPOP-like experiments with real-time dosimetry in a safe, compact, and integrated benchtop platform.

Wang, K.; Dagil, R.; Lavstsen, T.; Misra, S. K.; Spliid, C. B.; Wang, Y.; Gustavsson, T.; Sandoval, D. R.; Vidal-Calvo, E. E.; Choudhary, S.; Agerbaek, M. Ø.; Lindorff-Larsen, K.; Nielsen, M. A.; Theander, T. G.; Sharp, J. S.; Clausen, T. M.; Gourdon, P.; Salanti, A. Cryo-EM Reveals the Architecture of Placental Malaria VAR2CSA and Provides Molecular Insight into Chondroitin Sulfate Binding.. Nature communications 2021, 12 (1), 2956. https://doi.org/10.1038/s41467-021-23254-1.

Placental malaria can have severe consequences for both mother and child and effective vaccines are lacking. Parasite-infected red blood cells sequester in the placenta through interaction between parasite-expressed protein VAR2CSA and the glycosaminoglycan chondroitin sulfate A (CS) abundantly present in the intervillous space. Here, we report cryo-EM structures of the VAR2CSA ectodomain at up to 3.1 Å resolution revealing an overall V-shaped architecture and a complex domain organization. Notably, the surface displays a single significantly electropositive patch, compatible with binding of negatively charged CS. Using molecular docking and molecular dynamics simulations as well as comparative hydroxyl radical protein foot-printing of VAR2CSA in complex with placental CS, we identify the CS-binding groove, intersecting with the positively charged patch of the central VAR2CSA structure. We identify distinctive conserved structural features upholding the macro-molecular domain complex and CS binding capacity of VAR2CSA as well as divergent elements possibly allowing immune escape at or near the CS binding site. These observations will support rational design of second-generation placental malaria vaccines.

Tadi, S.; Misra, S. K.; Sharp, J. S. Inline Liquid Chromatography-Fast Photochemical Oxidation of Proteins for Targeted Structural Analysis of Conformationally Heterogeneous Mixtures.. Analytical chemistry 2021, 93 (7), 3510-3516. https://doi.org/10.1021/acs.analchem.0c04872.

Structural analysis of proteins in a conformationally heterogeneous mixture has long been a difficult problem in structural biology. In structural analysis by covalent labeling mass spectrometry, conformational heterogeneity results in data reflecting a weighted average of all conformers, complicating data analysis and potentially causing misinterpretation of results. Here, we describe a method coupling size-exclusion chromatography (SEC) with hydroxyl radical protein footprinting using inline fast photochemical oxidation of proteins (FPOP). Using a controlled synthetic mixture of holomyoglobin and apomyoglobin, we validate that we can achieve accurate footprints of each conformer using LC-FPOP when compared to offline FPOP of each pure conformer. We then applied LC-FPOP to analyze the adalimumab heat-shock aggregation process. We found that the LC-FPOP footprint of unaggregated adalimumab was consistent with a previously published footprint of the native IgG. The LC-FPOP footprint of the aggregation product indicated that heat-shock aggregation primarily protected the hinge region, suggesting that this region is involved with the heat-shock aggregation process of this molecule. LC-FPOP offers a new method to probe dynamic conformationally heterogeneous mixtures that can be separated by SEC such as biopharmaceutical aggregates and to obtain accurate information on the topography of each conformer.

Cheng, Z.; Mobley, C.; Misra, S. K.; Gadepalli, R. S.; Hammond, R. I.; Brown, L. S.; Rimoldi, J. M.; Sharp, J. S. Self-Organized Amphiphiles Are Poor Hydroxyl Radical Scavengers in Fast Photochemical Oxidation of Proteins Experiments.. Journal of the American Society for Mass Spectrometry 2021, 32 (5), 1155-1161. https://doi.org/10.1021/jasms.0c00457.

Analysis of membrane protein topography using fast photochemical oxidation of proteins (FPOP) has been reported in recent years but is still underrepresented in literature. Based on the hydroxyl radical reactivity of lipids and other amphiphiles, it is believed that the membrane environment acts as a hydroxyl radical scavenger decreasing effective hydroxyl radical doses and resulting in less observed oxidation of proteins. We found no significant change in bulk solvent radical scavenging activity upon the addition of disrupted cellular membranes up to 25600 cells/μL using an inline radical dosimeter. We confirmed the nonscavenging nature of the membrane in bulk solution with the FPOP results of a soluble model protein in the presence of cell membranes, which showed no significant difference in oxidation with or without membranes. The use of detergents revealed that, while soluble detergent below the critical micelle concentration is a potent hydroxyl radical scavenger, additional detergent has little to no hydroxyl radical scavenging effect once the critical micelle concentration is reached. Examination of both an extracellular peptide of the integral membrane protein bacteriorhodopsin as well as a novel hydroxyl radical dosimeter tethered to a Triton X-series amphiphile indicate that proximity to the membrane surface greatly decreases reaction with hydroxyl radicals, even though the oxidation target is equally solvent accessible. These results suggest that the observed reduced oxidation of solvent-accessible surfaces of integral membrane proteins is due to the high local concentration of radical scavengers in the membrane or membrane mimetics competing for the local concentration of hydroxyl radicals.

Mitra, S.; Prakash, D.; Rajabimoghadam, K.; Wawrzak, Z.; Prasad, P.; Wu, T.; Misra, S. K.; Sharp, J. S.; Garcia-Bosch, I.; Chakraborty, S. De Novo Design of a Self-Assembled Artificial Copper Peptide That Activates and Reduces Peroxide.. ACS catalysis 2021, 11 (16), 10267-10278. https://doi.org/10.1021/acscatal.1c02132.

Copper-containing metalloenzymes constitute a major class of proteins which catalyze a myriad of reactions in nature. Inspired by the structural and functional characteristics of this unique class of metalloenzymes, we report the conception, design, characterization, and functional studies of a de novo artificial copper peptide (ArCuP) within a trimeric self-assembled polypeptide scaffold that activates and reduces peroxide. Using a first principles approach, the ArCuP was designed to coordinate one Cu via three His residues introduced at an a site of the peptide scaffold. X-ray crystallographic, UV-vis and EPR data demonstrate that Cu binds via the Nε atoms of His forming a T2Cu environment. When reacted with hydrogen peroxide, the putative copper-hydroperoxo species is formed where a reductive priming step accelerates the rate of its formation and reduction. Mass spectrometry was used to identify specific residues undergoing oxidative modification, which showed His oxidation only in the reduced state. The redox behavior of the ArCuP was elucidated by protein film voltammetry. Detailed characterization of the electrocatalytic behavior of the ArCuP led us to determine the catalytic parameters (KM, kcat), which established the peroxidase activity of the ArCuP. Combined spectroscopic and electrochemical data showed a pH-dependence on the reactivity, which was optimum at pH 7.5.

Mitra, D.; Hasan, M. H.; Bates, J. T.; Bierdeman, M. A.; Ederer, D. R.; Parmar, R. C.; Fassero, L. A.; Liang, Q.; Qiu, H.; Tiwari, V.; Zhang, F.; Linhardt, R. J.; Sharp, J. S.; Wang, L.; Tandon, R. The Degree of Polymerization and Sulfation Patterns in Heparan Sulfate Are Critical Determinants of Cytomegalovirus Entry into Host Cells.. PLoS pathogens 2021, 17 (8), e1009803. https://doi.org/10.1371/journal.ppat.1009803.

Several enveloped viruses, including herpesviruses attach to host cells by initially interacting with cell surface heparan sulfate (HS) proteoglycans followed by specific coreceptor engagement which culminates in virus-host membrane fusion and virus entry. Interfering with HS-herpesvirus interactions has long been known to result in significant reduction in virus infectivity indicating that HS play important roles in initiating virus entry. In this study, we provide a series of evidence to prove that specific sulfations as well as the degree of polymerization (dp) of HS govern human cytomegalovirus (CMV) binding and infection. First, purified CMV extracellular virions preferentially bind to sulfated longer chain HS on a glycoarray compared to a variety of unsulfated glycosaminoglycans including unsulfated shorter chain HS. Second, the fraction of glycosaminoglycans (GAG) displaying higher dp and sulfation has a larger impact on CMV titers compared to other fractions. Third, cell lines deficient in specific glucosaminyl sulfotransferases produce significantly reduced CMV titers compared to wild-type cells and virus entry is compromised in these mutant cells. Finally, purified glycoprotein B shows strong binding to heparin, and desulfated heparin analogs compete poorly with heparin for gB binding. Taken together, these results highlight the significance of HS chain length and sulfation patterns in CMV attachment and infectivity.

Weinberger, S. R.; Chea, E. E.; Sharp, J. S.; Misra, S. K. Laser-Free Hydroxyl Radical Protein Footprinting to Perform Higher Order Structural Analysis of Proteins.. Journal of visualized experiments : JoVE 2021, No. 172. https://doi.org/10.3791/61861.

Hydroxyl Radical Protein Footprinting (HRPF) is an emerging and promising higher order structural analysis technique that provides information on changes in protein structure, protein-protein interactions, or protein-ligand interactions. HRPF utilizes hydroxyl radicals (▪OH) to irreversibly label a protein's solvent accessible surface. The inherent complexity, cost, and hazardous nature of performing HRPF have substantially limited broad-based adoption in biopharma. These factors include: 1) the use of complicated, dangerous, and expensive lasers that demand substantial safety precautions; and 2) the irreproducibility of HRPF caused by background scavenging of ▪OH that limit comparative studies. This publication provides a protocol for operation of a laser-free HRPF system. This laser-free HRPF system utilizes a high energy, high-pressure plasma light source flash oxidation technology with in-line radical dosimetry. The plasma light source is safer, easier to use, and more efficient in generating hydroxyl radicals than laser-based HRPF systems, and the in-line radical dosimeter increases the reproducibility of studies. Combined, the laser-free HRPF system addresses and surmounts the mentioned shortcomings and limitations of laser-based techniques.

2020

Bezerra, F. F.; Vignovich, W. P.; Aderibigbe, A. O.; Liu, H.; Sharp, J. S.; Doerksen, R. J.; Pomin, V. H. Conformational Properties of L-Fucose and the Tetrasaccharide Building Block of the Sulfated L-Fucan from Lytechinus Variegatus.. Journal of structural biology 2020, 209 (1), 107407. https://doi.org/10.1016/j.jsb.2019.107407.

Although the 3D structure of carbohydrates is known to contribute to their biological roles, conformational studies of sugars are challenging because their chains are flexible in solution and consequently the number of 3D structural restraints is limited. Here, we investigate the conformational properties of the tetrasaccharide building block of the Lytechinus variegatus sulfated fucan composed of the following structure [l-Fucp4(SO3-)-α(1-3)-l-Fucp2,4(SO3-)-α(1-3)-l-Fucp2(SO3-)-α(1-3)-l-Fucp2(SO3-)] and the composing monosaccharide unit Fucp, primarily by nuclear magnetic resonance (NMR) experiments performed at very low temperatures and using H2O as the solvent for the sugars rather than using the conventional deuterium oxide. By slowing down the fast chemical exchange rates and forcing the protonation of labile sites, we increased the number of through-space 1H-1H distances that could be measured by NMR spectroscopy. Following this strategy, additional conformational details of the tetrasaccharide and l-Fucp in solution were obtained. Computational molecular dynamics was performed to complement and validate the NMR-based measurements. A model of the NMR-restrained 3D structure is offered for the tetrasaccharide.

Tandon, R.; Sharp, J. S.; Zhang, F.; Pomin, V. H.; Ashpole, N. M.; Mitra, D.; Jin, W.; Liu, H.; Sharma, P.; Linhardt, R. J. Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives.. bioRxiv : the preprint server for biology 2020. https://doi.org/10.1101/2020.06.08.140236.

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic or prophylactic. Like other betacoronaviruses, attachment and entry of SARS-CoV-2 is mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in anti-viral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH and 6-O-desulfated enoxaparin with an IC50 of 5.99 μg/L, 1.08 mg/L, 1.77 μg/L, and 5.86 mg/L respectively. The low serum bioavailability of intranasally administered UFH, along with data suggesting that the nasal epithelium is a portal for initial infection and transmission, suggest that intranasal administration of UFH may be an effective and safe prophylactic treatment.