Publications

2019

Renault, Y. J. G.; Lynch, R.; Marelli, E.; Sharma, S. , V; Pubill-Ulldemolins, C.; Sharp, J. A.; Cartmell, C.; Cárdenas, P.; Goss, R. J. M. Buchwald Hartwig Diversification of Unprotected Halotryptophans, Halotryptophan Containing Tripeptides and the Natural Product Barettin in Aqueous Conditions.. Chemical communications (Cambridge, England) 2019, 55 (91), 13653-13656. https://doi.org/10.1039/c9cc02554e.

Blending synthetic biology and synthetic chemistry represents a powerful approach to diversity complex molecules. To further enable this, compatible synthetic tools are needed. We report the first Buchwald Hartwig amination reactions with unprotected halotryptophans under aqueous conditions and demonstrate this methodology is applicable also to the modification of unprotected tripeptides and the natural product barettin.

Liu, H.; Joshi, A.; Chopra, P.; Liu, L.; Boons, G.-J.; Sharp, J. S. Salt-Free Fractionation of Complex Isomeric Mixtures of Glycosaminoglycan Oligosaccharides Compatible With ESI-MS and Microarray Analysis.. Scientific reports 2019, 9 (1), 16566. https://doi.org/10.1038/s41598-019-53070-z.

Heparin and heparan sulfate (Hp/HS) are linear complex glycosaminoglycans which are involved in diverse biological processes. The structural complexity brings difficulties in separation, making the study of structure-function relationships challenging. Here we present a separation method for Hp/HS oligosaccharide fractionation with cross-compatible solvent and conditions, combining size exclusion chromatography (SEC), ion-pair reversed phase chromatography (IPRP), and hydrophilic interaction chromatography (HILIC) as three orthogonal separation methods that do not require desalting or extensive sample handling. With this method, the final eluent is suitable for structure-function relationship studies, including tandem mass spectrometry and microarray printing. Our data indicate that high resolution is achieved on both IPRP and HILIC for Hp/HS isomers. In addition, the fractions co-eluted in IPRP could be further separated by HILIC, with both separation dimensions capable of resolving some isomeric oligosaccharides. We demonstrate this method using both unpurified reaction products from isomeric synthetic hexasaccharides and an octasaccharide fraction from enoxaparin, identifying isomers resolved by this multi-dimensional separation method. We demonstrate both structural analysis by MS, as well as functional analysis by microarray printing and screening using a prototypical Hp/HS binding protein: basic-fibroblast growth factor (FGF2). Collectively, this method provides a strategy for efficient Hp/HS structure-function characterization.

2018

Riaz, M.; Misra, S. K.; Sharp, J. S. Towards High-Throughput Fast Photochemical Oxidation of Proteins: Quantifying Exposure in High Fluence Microtiter Plate Photolysis.. Analytical biochemistry 2018, 561-562, 32-36. https://doi.org/10.1016/j.ab.2018.09.014.

Protein structural analysis by mass spectrometry has gained significant popularity in recent years, including high-resolution protein topographical mapping by fast photochemical oxidation of proteins (FPOP). The ability to provide protein topographical information at moderate spatial resolution makes FPOP an attractive technology for the protein pharmaceutical discovery and development processes. However, current technology limits the throughput and requires significant manual sample manipulation. Similarly, as FPOP is being used on larger samples, sample flow through the capillary becomes challenging. No systematic comparison of the performance of static flash photolysis with traditional flow FPOP has been reported. Here, we evaluate a 96-well microtiter-based laser flash photolysis method for the topographical probing of proteins, which subsequently could be used to analyze higher order structure of the protein in a high-throughput fashion with minimal manual sample manipulation. We used multiple metrics to compare microtiter FPOP performance with that of traditional flow FPOP: adenine-based hydroxyl radical dosimetry, oxidation efficiency of a model peptide, and hydroxyl radical protein footprint of myoglobin. In all cases, microtiter plate FPOP performed comparably with traditional flow FPOP, requiring a small fraction of the time for exposure. This greatly reduced sample exposure time, coupled with automated sample handling in 96-well microtiter plates, makes microtiter-based FPOP an important step in achieving the throughput required to adapt hydroxyl radical protein footprinting for screening purposes.

Liang, Q.; Chopra, P.; Boons, G.-J.; Sharp, J. S. Improved de Novo Sequencing of Heparin/Heparan Sulfate Oligosaccharides by Propionylation of Sites of Sulfation.. Carbohydrate research 2018, 465, 16-21. https://doi.org/10.1016/j.carres.2018.06.002.

The structure of heparin and heparan sulfate (Hep/HS) oligosaccharides, as determined by the length and the pattern of sulfation, acetylation, and uronic acid epimerization, dictates their biological function through modulating interactions with protein targets. But fine structural determination is a very challenging task due to the lability of the sulfate modifications and difficulties in separating isomeric HS chains. Previously, we reported a strategy for chemical derivatization involving permethylation, desulfation, and trideuteroperacetylation, combined with standard reverse phase LC-MS/MS that enables the structural sequencing for heparin/HS oligosaccharides of sizes up to dodecasaccharide by positionally replacing all sulfates with more stable trideuteroacetyl groups, allowing for robust MS/MS sequencing. However, isomeric oligosaccharides that contain both N-sulfation and N-acetylation become isotopomers after labeling, differing only in the sites of deuteration. This prevents chromatographic separation of these different mixed domain sequences post-derivatization, and makes sequencing by MS/MS difficult due to co-fragmentation of the isotopomers leading to chimeric product ion spectra. In order to improve chromatographic separation of mixed domain oligosaccharides, we have introduced a propionylation step in place of trideuteroacetylation for labeling of sites of sulfation. HS standard disaccharides have been used to evaluate the efficiency of this improved chemical derivatization. The results show that we can quantitatively replace sulfation with propionyl groups with the same high efficiency as the previously reported trideuteroacetylation. After derivatization, we demonstrate the ability to chromatographically separate two mixed domain tetrasaccharide isomers differing solely by the order of N-sulfation and N-acetylation, allowing for full sequencing of each by MS/MS. These results represent a marked improvement in the ability of our previously reported derivatization strategy to analyze complex mixtures of Hep/HS oligosaccharides without a decrease in sensitivity.

Schmalstig, A. A.; Benoit, S. L.; Misra, S. K.; Sharp, J. S.; Maier, R. J. Noncatalytic Antioxidant Role for Helicobacter Pylori Urease.. Journal of bacteriology 2018, 200 (17). https://doi.org/10.1128/JB.00124-18.

The well-studied catalytic role of urease, the Ni-dependent conversion of urea into carbon dioxide and ammonia, has been shown to protect Helicobacter pylori against the low pH environment of the stomach lumen. We hypothesized that the abundantly expressed urease protein can play another noncatalytic role in combating oxidative stress via Met residue-mediated quenching of harmful oxidants. Three catalytically inactive urease mutant strains were constructed by single substitutions of Ni binding residues. The mutant versions synthesize normal levels of urease, and the altered versions retained all methionine residues. The three site-directed urease mutants were able to better withstand a hypochlorous acid (HOCl) challenge than a ΔureAB deletion strain. The capacity of purified urease to protect whole cells via oxidant quenching was assessed by adding urease enzyme to nongrowing HOCl-exposed cells. No wild-type cells were recovered with oxidant alone, whereas urease addition significantly aided viability. These results suggest that urease can protect H. pylori against oxidative damage and that the protective ability is distinct from the well-characterized catalytic role. To determine the capability of methionine sulfoxide reductase (Msr) to reduce oxidized Met residues in urease, purified H. pylori urease was exposed to HOCl and a previously described Msr peptide repair mixture was added. Of the 25 methionine residues in urease, 11 were subject to both oxidation and to Msr-mediated repair, as identified by mass spectrometry (MS) analysis; therefore, the oxidant-quenchable Met pool comprising urease can be recycled by the Msr repair system. Noncatalytic urease appears to play an important role in oxidant protection.IMPORTANCE Chronic Helicobacter pylori infection can lead to gastric ulcers and gastric cancers. The enzyme urease contributes to the survival of the bacterium in the harsh environment of the stomach by increasing the local pH. In addition to combating acid, H. pylori must survive host-produced reactive oxygen species to persist in the gastric mucosa. We describe a cyclic amino acid-based antioxidant role of urease, whereby oxidized methionine residues can be recycled by methionine sulfoxide reductase to again quench oxidants. This work expands our understanding of the role of an already acknowledged pathogen virulence factor and specifically expands our knowledge of H. pylori survival mechanisms.

Khaje, N. A.; Mobley, C. K.; Misra, S. K.; Miller, L.; Li, Z.; Nudler, E.; Sharp, J. S. Variation in FPOP Measurements Is Primarily Caused by Poor Peptide Signal Intensity.. Journal of the American Society for Mass Spectrometry 2018, 29 (9), 1901-1907. https://doi.org/10.1007/s13361-018-1994-y.

Fast photochemical oxidation of proteins (FPOP) may be used to characterize changes in protein structure by measuring differences in the apparent rate of peptide oxidation by hydroxyl radicals. The variability between replicates is high for some peptides and limits the statistical power of the technique, even using modern methods controlling variability in radical dose and quenching. Currently, the root cause of this variability has not been systematically explored, and it is unknown if the major source(s) of variability are structural heterogeneity in samples, remaining irreproducibility in FPOP oxidation, or errors in LC-MS quantification of oxidation. In this work, we demonstrate that coefficient of variation of FPOP measurements varies widely at low peptide signal intensity, but stabilizes to ≈ 0.13 at higher peptide signal intensity. We dramatically reduced FPOP variability by increasing the total sample loaded onto the LC column, indicating that the major source of variability in FPOP measurements is the difficulties in quantifying oxidation at low peptide signal intensities. This simple method greatly increases the sensitivity of FPOP structural comparisons, an important step in applying the technique to study subtle conformational changes and protein-ligand interactions. Graphical Abstract ᅟ.

Sharp, J. S.; Misra, S. K.; Persoff, J. J.; Egan, R. W.; Weinberger, S. R. Real Time Normalization of Fast Photochemical Oxidation of Proteins Experiments by Inline Adenine Radical Dosimetry.. Analytical chemistry 2018, 90 (21), 12625-12630. https://doi.org/10.1021/acs.analchem.8b02787.

Hydroxyl radical protein footprinting (HRPF) is a powerful method for measuring protein topography, allowing researchers to monitor events that alter the solvent accessible surface of a protein (e.g., ligand binding, aggregation, conformational changes, etc.) by measuring changes in the apparent rate of reaction of portions of the protein to hydroxyl radicals diffusing in solution. Fast Photochemical Oxidation of Proteins (FPOP) offers an ultrafast benchtop method for radical generation for HRPF, photolyzing hydrogen peroxide using a UV laser to generate high concentrations of hydroxyl radicals that are consumed on roughly a microsecond time scale. The broad reactivity of hydroxyl radicals means that almost anything added to the solution (e.g., ligands, buffers, excipients, etc.) will scavenge hydroxyl radicals, altering their half-life and changing the effective radical concentration experienced by the protein. Similarly, minute changes in peroxide concentration, laser fluence, and buffer composition can alter the effective radical concentration, making reproduction of data challenging. Here, we present a simple method for radical dosimetry that can be carried out as part of the FPOP workflow, allowing for measurement of effective radical concentration in real time. Additionally, by modulating the amount of radical generated, we demonstrate that effective hydroxyl radical yields in FPOP HRPF experiments carried out in buffers with widely differing levels of hydroxyl radical scavenging capacity can be compensated on the fly, yielding statistically indistinguishable results for the same conformer. This method represents a major step in transforming FPOP into a robust and reproducible technology capable of probing protein structure in a wide variety of contexts.

2017

Chiu, Y.; Schliekelman, P.; Orlando, R.; Sharp, J. S. A Multivariate Mixture Model to Estimate the Accuracy of Glycosaminoglycan Identifications Made by Tandem Mass Spectrometry (MS/MS) and Database Search.. Molecular & cellular proteomics : MCP 2017, 16 (2), 255-264. https://doi.org/10.1074/mcp.M116.062588.

We present a statistical model to estimate the accuracy of derivatized heparin and heparan sulfate (HS) glycosaminoglycan (GAG) assignments to tandem mass (MS/MS) spectra made by the first published database search application, GAG-ID. Employing a multivariate expectation-maximization algorithm, this statistical model distinguishes correct from ambiguous and incorrect database search results when computing the probability that heparin/HS GAG assignments to spectra are correct based upon database search scores. Using GAG-ID search results for spectra generated from a defined mixture of 21 synthesized tetrasaccharide sequences as well as seven spectra of longer defined oligosaccharides, we demonstrate that the computed probabilities are accurate and have high power to discriminate between correctly, ambiguously, and incorrectly assigned heparin/HS GAGs. This analysis makes it possible to filter large MS/MS database search results with predictable false identification error rates.

Xie, B.; Sood, A.; Woods, R. J.; Sharp, J. S. Quantitative Protein Topography Measurements by High Resolution Hydroxyl Radical Protein Footprinting Enable Accurate Molecular Model Selection.. Scientific reports 2017, 7 (1), 4552. https://doi.org/10.1038/s41598-017-04689-3.

We report an integrated workflow that allows mass spectrometry-based high-resolution hydroxyl radical protein footprinting (HR-HRPF) measurements to accurately measure the absolute average solvent accessible surface area (<SASA>) of amino acid side chains. This approach is based on application of multi-point HR-HRPF, electron-transfer dissociation (ETD) tandem MS (MS/MS) acquisition, measurement of effective radical doses by radical dosimetry, and proper normalization of the inherent reactivity of the amino acids. The accuracy of the resulting <SASA> measurements was tested by using well-characterized protein models. Moreover, we demonstrated the ability to use <SASA> measurements from HR-HRPF to differentiate molecular models of high accuracy (<3 Å backbone RMSD) from models of lower accuracy (>4 Å backbone RMSD). The ability of <SASA> data from HR-HRPF to differentiate molecular model quality was found to be comparable to that of <SASA> data obtained from X-ray crystal structures, indicating the accuracy and utility of HR-HRPF for evaluating the accuracy of computational models.

Liu, Y.; Sharp, J. S.; Do, D. H.-T.; Kahn, R. A.; Schwalbe, H.; Buhr, F.; Prestegard, J. H. Mistakes in Translation: Reflections on Mechanism.. PloS one 2017, 12 (6), e0180566. https://doi.org/10.1371/journal.pone.0180566.

Mistakes in translation of messenger RNA into protein are clearly a detriment to the recombinant production of pure proteins for biophysical study or the biopharmaceutical market. However, they may also provide insight into mechanistic details of the translation process. Mistakes often involve the substitution of an amino acid having an abundant codon for one having a rare codon, differing by substitution of a G base by an A base, as in the case of substitution of a lysine (AAA) for arginine (AGA). In these cases one expects the substitution frequency to depend on the relative abundances of the respective tRNAs, and thus, one might expect frequencies to be similar for all sites having the same rare codon. Here we demonstrate that, for the ADP-ribosylation factor from yeast expressed in E. coli, lysine for arginine substitutions frequencies are not the same at the 9 sites containing a rare arginine codon; mis-incorporation frequencies instead vary from less than 1 to 16%. We suggest that the context in which the codons occur (clustering of rare sites) may be responsible for the variation. The method employed to determine the frequency of mis-incorporation involves a novel mass spectrometric analysis of the products from the parallel expression of wild type and codon-optimized genes in 15N and 14N enriched media, respectively. The high sensitivity and low material requirements of the method make this a promising technology for the collection of data relevant to other mis-incorporations. The additional data could be of value in refining models for the ribosomal translation elongation process.