Publications

2022

Ijaz, Uzma, Muhammad Sohail, Muhammad Usman Minhas, Shahzeb Khan, Zahid Hussain, Mohsin Kazi, Syed Ahmed Shah, Arshad Mahmood, and Mohammed Maniruzzaman. (2022) 2022. “Biofunctional Hyaluronic Acid/κ-Carrageenan Injectable Hydrogels for Improved Drug Delivery and Wound Healing.”. Polymers 14 (3). https://doi.org/10.3390/polym14030376.

The in situ injectable hydrogel system offers a widespread range of biomedical applications in prompt chronic wound treatment and management, as it provides self-healing, maintains a moist wound microenvironment, and offers good antibacterial properties. This study aimed to develop and evaluate biopolymer-based thermoreversible injectable hydrogels for effective wound-healing applications and the controlled drug delivery of meropenem. The injectable hydrogel was developed using the solvent casting method and evaluated for structural changes using proton nuclear magnetic resonance, Fourier transforms infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results indicated the self-assembly of hyaluronic acid and kappa-carrageenan and the thermal stability of the fabricated injectable hydrogel with tunable gelation properties. The viscosity assessment indicated the in-situ gelling ability and injectability of the hydrogels at various temperatures. The fabricated hydrogel was loaded with meropenem, and the drug release from the hydrogel in phosphate buffer saline (PBS) with a pH of 7.4 was 96.12%, and the simulated wound fluid with a pH of 6.8 was observed to be at 94.73% at 24 h, which corresponds to the sustained delivery of meropenem. Antibacterial studies on P. aeruginosa, S. aureus, and E. coli with meropenem-laden hydrogel showed higher zones of inhibition. The in vivo studies in Sprague Dawley (SD) rats presented accelerated healing with the drug-loaded injectable hydrogel, while 90% wound closure with the unloaded injectable hydrogel, 70% in the positive control group (SC drug), and 60% in the negative control group was observed (normal saline) after fourteen days. In vivo wound closure analysis confirmed that the developed polymeric hydrogel has synergistic wound-healing potential.

Ding, Li, Ashlee D Brunaugh, Rishi Thakkar, Christian Lee, Qingyan Jenny Zhao, Justin Kalafat, Mohammed Maniruzzaman, and Hugh D C Smyth. (2022) 2022. “Comparison of HPMC Inhalation-Grade Capsules and Their Effect on Aerosol Performance Using Budesonide and Rifampicin DPI Formulations.”. AAPS PharmSciTech 23 (1): 52. https://doi.org/10.1208/s12249-021-02175-8.

Despite the fact that capsules play an important role in many dry powder inhalation (DPI) systems, few studies have been conducted to investigate the capsules' interactions with respirable powders. The effect of four commercially available hydroxypropyl methylcellulose (HPMC)inhalation-grade capsule types on the aerosol performance of two model DPI formulations (lactose carrier and a carrier-free formulation) at two different pressure drops was investigated in this study. There were no statistically significant differences in performance between capsules by using the carrier-based formulation. However, there were some differences between the capsules used for the carrier-free rifampicin formulation. At 2-kPa pressure drop conditions, Embocaps® VG capsules had a higher mean emitted fraction (EF) (89.86%) and a lower mean mass median aerodynamic diameter (MMAD) (4.19 µm) than Vcaps® (Capsugel) (85.54%, 5.10 µm) and Quali-V® I (Qualicaps) (85.01%, 5.09 µm), but no significant performance differences between Embocaps® and ACGcaps™ HI. Moreover, Embocaps® VG capsules exhibited a higher mean respirable fraction (RF)/fine particle fraction (FPF) with a 3-µm-sized cutoff (RF/FPF< 3 µm) (33.05%/35.36%) against Quali-V® I (28.16%/31.75%) (P < 0.05), and a higher RF/FPF with a 5-µm-sized cutoff (RF/FPF< 5 µm) (49.15%/52.57%) versus ACGcaps™ HI (38.88%/41.99%) (P < 0.01) at 4-kPa pressure drop condition. Aerosol performance variability, pierced-flap detachment, as well as capsule hardness and stiffness, may all influence capsule type selection in a carrier-based formulation. The capsule type influenced EF, RF, FPF, and MMAD in the carrier-free formulation.

Aghda, Niloofar Heshmati, Yu Zhang, Jiawei Wang, Anqi Lu, Amit Raviraj Pillai, and Mohammed Maniruzzaman. (2022) 2022. “A Novel 3D Printing Particulate Manufacturing Technology for Encapsulation of Protein Therapeutics: Sprayed Multi Adsorbed-Droplet Reposing Technology (SMART).”. Bioengineering (Basel, Switzerland) 9 (11). https://doi.org/10.3390/bioengineering9110653.

Recently, various innovative technologies have been developed for the enhanced delivery of biologics as attractive formulation targets including polymeric micro and nanoparticles. Combined with personalized medicine, this area can offer a great opportunity for the improvement of therapeutics efficiency and the treatment outcome. Herein, a novel manufacturing method has been introduced to produce protein-loaded chitosan particles with controlled size. This method is based on an additive manufacturing technology that allows for the designing and production of personalized particulate based therapeutic formulations with a precise control over the shape, size, and potentially the geometry. Sprayed multi adsorbed-droplet reposing technology (SMART) consists of the high-pressure extrusion of an ink with a well determined composition using a pneumatic 3D bioprinting approach and flash freezing the extrudate at the printing bed, optionally followed by freeze drying. In the present study, we attempted to manufacture trypsin-loaded chitosan particles using SMART. The ink and products were thoroughly characterized by dynamic light scattering, rheometer, Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red (FTIR) and Circular Dichroism (CD) spectroscopy. These characterizations confirmed the shape morphology as well as the protein integrity over the process. Further, the effect of various factors on the production were investigated. Our results showed that the concentration of the carrier, chitosan, and the lyoprotectant concentration as well as the extrusion pressure have a significant effect on the particle size. According to CD spectra, SMART ensured Trypsin's secondary structure remained intact regardless of the ink composition and pressure. However, our study revealed that the presence of 5% (w/v) lyoprotectant is essential to maintain the trypsin's proteolytic activity. This study demonstrates, for the first time, the viability of SMART as a single-step efficient process to produce biologics-based stable formulations with a precise control over the particulate morphology which can further be expanded across numerous therapeutic modalities including vaccines and cell/gene therapies.

Wang, Jiawei, Niloofar Heshmati Aghda, Junhuang Jiang, Ayishah Mridula Habib, Defang Ouyang, and Mohammed Maniruzzaman. (2022) 2022. “3D Bioprinted Microparticles: Optimizing Loading Efficiency Using Advanced DoE Technique and Machine Learning Modeling.”. International Journal of Pharmaceutics 628: 122302. https://doi.org/10.1016/j.ijpharm.2022.122302.

Current microparticle (MP) development still strongly relies on the laborious trial-and-error approach. Herein, we developed a systemic method to evaluate the significance of MP formulation factors and predict drug loading efficiency (DLE) using design of experiment (DoE) and machine learning modeling. A first-in-class 3D printing concept was initially employed to fabricate polymeric MPs by a 3D printer. Sprayed Multi Adsorbed-droplet Reposing Technology (SMART) was developed to combine extrusion-based printing with emulsion evaporation technique to fabricate a small molecule drug i.e., 6-thioguanine (6-TG) loaded poly (lactide-co-glycolide) (PLGA) MPs. Compared to conventional emulsion evaporation method, SMART employs the shear force exerted by the printing nozzle rather than the sonication energy to generate smaller emulsion droplets in a single step. Furthermore, the applied shear force in the 3D printing process reported herein is controllable since the emulsion is extruded through the nozzle under preset printing conditions. The formulated MPs exhibited spherical structure with size distribution ∼ 1-3μ m in diameter and reached ∼ 100 % drug release at 10 h. Also, the papain-like protease (PLpro) inhibition efficacy of 6-TG in formulated MPs was maintained even after the printing process under different printing conditions. Furthermore, the formulation factor importance was assessed by DoE statistical analysis and further validated by machine learning modeling. Among the four process parameters (drug amount, printing speed, printing pressure, and nozzle size), drug amount was the most influential formulation factor. Moreover, it is interesting that nearly all the machine learning models, especially decision tree (DT), demonstrated superior performance in predicting DLE compared to DoE regression models. Overall, incorporating DoE and machine learning modeling shows great promises in the prediction and optimization of MP formulations factors by means of a novel SMART technology. Moreover, this systemic approach helps streamline the development of MP with programmable pharmaceutical attributes, representing a new paradigm for digital pharmaceutical science.

Santitewagun, Supawan, Rishi Thakkar, Axel Zeitler, and Mohammed Maniruzzaman. (2022) 2022. “Detecting Crystallinity Using Terahertz Spectroscopy in 3D Printed Amorphous Solid Dispersions.”. Molecular Pharmaceutics 19 (7): 2380-89. https://doi.org/10.1021/acs.molpharmaceut.2c00163.

This study demonstrates the applicability of terahertz time-domain spectroscopy (THz-TDS) in evaluating the solid-state of the drug in selective laser sintering-based 3D printed dosage forms. Selective laser sintering is a powder bed-based 3D printing platform, which has recently demonstrated applicability in manufacturing amorphous solid dispersions (ASDs) through a layer-by-layer fusion process. When formulating ASDs, it is critical to confirm the final solid state of the drug as residual crystallinity can alter the performance of the formulation. Moreover, SLS 3D printing does not involve the mixing of the components during the process, which can lead to partially amorphous systems causing reproducibility and storage stability problems along with possibilities of unwanted polymorphism. In this study, a previously investigated SLS 3D printed ASD was characterized using THz-TDS and compared with traditionally used solid-state characterization techniques, including differential scanning calorimetry (DSC) and powder X-ray diffractometry (pXRD). THz-TDS provided deeper insights into the solid state of the dosage forms and their properties. Moreover, THz-TDS was able to detect residual crystallinity in granules prepared using twin-screw granulation for the 3D printing process, which was undetectable by the DSC and XRD. THz-TDS can prove to be a useful tool in gaining deeper insights into the solid-state properties and further aid in predicting the stability of amorphous solid dispersions.

Wang, Jiawei, and Mohammed Maniruzzaman. (2022) 2022. “A Global Bibliometric and Visualized Analysis of Bacteria-Mediated Cancer Therapy.”. Drug Discovery Today 27 (10): 103297. https://doi.org/10.1016/j.drudis.2022.05.023.

Bacteriotherapy has proved to be a powerful tool to fight against cancer. Herein, we used VOSviewer, CiteSpace, and Python to perform the first global bibliometric analysis of the literature from 2012 to 2021 on bacteria-mediated cancer therapy. Based on the results, East Asia and North America contributed the most publications to this research area. Additionally, the keyword analysis indicated that immunotherapy and nanoparticle (NP)-based drug delivery systems have long been popular topics in cancer bacteriotherapy, whereas the gut microbiota and probiotics are emerging research hotspots. This study provides crucial insights into the historical development of bacteria-mediated cancer therapy from 2012 to 2021, which will be helpful for scientists to conduct further investigation into this promising field.

Kulkarni, Vineet R, Mohsin Kazi, Ahmad Abdul-Wahhab Shahba, Aakib Radhanpuri, and Mohammed Maniruzzaman. (2022) 2022. “Three-Dimensional Printing of a Container Tablet: A New Paradigm for Multi-Drug-Containing Bioactive Self-Nanoemulsifying Drug-Delivery Systems (Bio-SNEDDSs).”. Pharmaceutics 14 (5). https://doi.org/10.3390/pharmaceutics14051082.

This research demonstrates the use of fused deposition modeling (FDM) 3D printing to control the delivery of multiple drugs containing bioactive self-nano emulsifying drug-delivery systems (SNEDDSs). Around two-thirds of the new chemical entities being introduced in the market are associated with some inherent issues, such as poor solubility and high lipophilicity. SNEDDSs provide for an innovative and easy way to develop a delivery platform for such drugs. Combining this platform with FDM 3D printing would further aid in developing new strategies for delivering poorly soluble drugs and personalized drug-delivery systems with added therapeutic benefits. This study evaluates the performance of a 3D-printed container system containing curcumin (CUR)- and lansoprazole (LNS)-loaded SNEDDS. The SNEDDS showed 50% antioxidant activity (IC50) at concentrations of around 330.1 µg/mL and 393.3 µg/mL in the DPPH and ABTS radical scavenging assay, respectively. These SNEDDSs were loaded with no degradation and leakage from the 3D-printed container. We were able to delay the release of the SNEDDS from the hollow prints while controlling the print wall thickness to achieve lag phases of 30 min and 60 min before the release from the 0.4 mm and 1 mm wall thicknesses, respectively. Combining these two innovative drug-delivery strategies demonstrates a novel option for tackling the problems associated with multi-drug delivery and delivery of drugs susceptible to degradation in, i.e., gastric pH for targeting disease conditions throughout the gastrointestinal tract (GIT). It is also envisaged that such delivery systems reported herein can be an ideal solution to deliver many challenging molecules, such as biologics, orally or near the target site in the future, thus opening a new paradigm for multi-drug-delivery systems.

Giri, Bhupendra Raj, and Mohammed Maniruzzaman. (2022) 2022. “Fabrication of Sustained-Release Dosages Using Powder-Based Three-Dimensional (3D) Printing Technology.”. AAPS PharmSciTech 24 (1): 4. https://doi.org/10.1208/s12249-022-02461-z.

Three-dimensional (3D)-printed tablets prepared using powder-based printing techniques like selective laser sintering (SLS) typically disintegrate/dissolve and release the drug within a few minutes because of their inherent porous nature and loose structure. The goal of this study was to demonstrate the suitability of SLS 3DP technology for fabricating sustained-release dosages utilizing Kollidon® SR (KSR), a matrix-forming excipient composed of polyvinyl acetate and polyvinylpyrrolidone (8:2). A physical mixture (PM), comprising 10:85:5 (% w/w) of acetaminophen (ACH), KSR, and Candurin®, was sintered using a benchtop SLS 3D printer equipped with a 2.3-W 455-nm blue visible laser. After optimization of the process parameters and formulation composition, robust 3D-printed tablets were obtained as per the computer-aided design (CAD) model. Advanced solid-state characterizations by powder X-ray diffraction (PXRD) and wide-angle X-ray scattering (WAXS) confirmed that ACH remained in its native crystalline state after sintering. In addition, X-ray micro-computed tomography (micro-CT) studies revealed that the tablets contain a total porosity of 57.7% with an average pore diameter of 24.8 μm. Moreover, SEM images exhibited a morphological representation of the ACH sintered tablets' exterior surface. Furthermore, the KSR matrix 3D-printed tablets showed a sustained-release profile, releasing roughly 90% of the ACH over 12 h as opposed to a burst release from the free drug and PM. Overall, our work shows for the first time that KSR can be used as a suitable polymer matrix to create sustained-release dosage forms utilizing the digitally controllable SLS 3DP technology, showcasing an alternative technique and pharmaceutical excipient.

2021

Al-Dulimi, Zaisam, Melissa Wallis, Deck Khong Tan, Mohammed Maniruzzaman, and Ali Nokhodchi. (2021) 2021. “3D Printing Technology As Innovative Solutions for Biomedical Applications.”. Drug Discovery Today 26 (2): 360-83. https://doi.org/10.1016/j.drudis.2020.11.013.

3D printing was once predicted to be the third industrial revolution. Today, the use of 3D printing is found across almost all industries. This article discusses the latest 3D printing applications in the biomedical industry.

Davis, Daniel A, Rishi Thakkar, Yongchao Su, Robert O Williams, and Mohammed Maniruzzaman. (2021) 2021. “Selective Laser Sintering 3-Dimensional Printing As a Single Step Process to Prepare Amorphous Solid Dispersion Dosage Forms for Improved Solubility and Dissolution Rate.”. Journal of Pharmaceutical Sciences 110 (4): 1432-43. https://doi.org/10.1016/j.xphs.2020.11.012.

This study reports the development of ritonavir-copovidone amorphous solid dispersions (ASDs) and dosage forms thereof using selective laser sintering (SLS) 3-dimensional (3-D) printing in a single step, circumventing the post-processing steps required in common techniques employed to make ASDs. For this study, different drug loads of ritonavir with copovidone were processed at varying processing conditions to understand the impact, range, and correlation of these parameters for successful ASD formation. Further, ASDs characterized using conventional and advanced solid-state techniques including wide-angle X-ray scattering (WAXS), solid-state nuclear magnetic resonance (ssNMR), revealed the full conversion of the crystalline drug to its amorphous form as a function of laser-assisted selective fusion in a layer-by-layer manner. It was observed that an optimum combination of the powder flow properties, surface temperature, chamber temperature, laser speed, and hatch spacing was crucial for successful ASD formation, any deviations resulted in print failures or only partial amorphous conversion. Moreover, a 21-fold increase in solubility was demonstrated by the SLS 3-D printed tablets. The results confirmed that SLS 3-D printing can be used as a single-step platform for creating ASD-based pharmaceutical dosage forms with a solubility advantage.