Publications

2021

Shi, Kejing, Rodrigo Aviles-Espinosa, Elizabeth Rendon-Morales, Lisa Woodbine, Jonathan P Salvage, Mohammed Maniruzzaman, and Ali Nokhodchi. (2021) 2021. “Magnetic Field Triggerable Macroporous PDMS Sponge Loaded With an Anticancer Drug, 5-Fluorouracil.”. ACS Biomaterials Science & Engineering 7 (1): 180-95. https://doi.org/10.1021/acsbiomaterials.0c01608.

This study aims to prepare, optimize, and characterize magnetic-field-sensitive sugar-templated polydimethylsiloxane (PDMS) sponges for localized delivery of an anticancer drug, 5-fluorouracil (FLU). For this purpose, different concentrations of carbonyl iron (CI) and magnetite Fe3O4 nanopowders were embedded as magnetosensitive materials in PDMS resins for the fabrication of macroporous sponges via a sugar-template process. The process is environmentally friendly and simple. The fabricated interconnected macroporous magnetic particles loaded PDMS sponges possess flexible skeletons and good recyclability because of their recoverability after compression (deformation) without any breakdown. The prepared magnetic PDMS sponges were evaluated for their morphology (SEM and EDS), porosity (absorbency), elastic modulus, deformation under a magnetic field, thermostability, and in vitro cell studies. All physicochemical and magnetomechanical analysis confirmed that the optimized magnetic-field-sensitive PDMS sponge can provide an efficient method for delivering an on-demand dose of anticancer drug solutions at a specific location and timing with the aid of controlled magnetic fields.

Zhang, Yajie, Daniel A Davis, Khaled AboulFotouh, Jieliang Wang, Donna Williams, Akhilesh Bhambhani, Michael Zakrewsky, Mohammed Maniruzzaman, Zhengrong Cui, and Robert O Williams. (2021) 2021. “Novel Formulations and Drug Delivery Systems to Administer Biological Solids.”. Advanced Drug Delivery Reviews 172: 183-210. https://doi.org/10.1016/j.addr.2021.02.011.

Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.

Shi, Kejing, Jonathan P Salvage, Mohammed Maniruzzaman, and Ali Nokhodchi. (2021) 2021. “Role of Release Modifiers to Modulate Drug Release from Fused Deposition Modelling (FDM) 3D Printed Tablets.”. International Journal of Pharmaceutics 597: 120315. https://doi.org/10.1016/j.ijpharm.2021.120315.

Although hot melt extrusion (HME) has been used in combination with fused deposition modelling (FDM) three-dimensional printing (3DP), suitable feedstock materials such as polymeric filaments with optimum properties are still limited. In this study, various release modifying excipients, namely, poly(vinyl alcohol) (PVA), Soluplus®, polyethylene glycol (PEG) 6000, Eudragit® RL PO/RS PO, hydroxypropyl methylcellulose (HPMC) K4M/E10M/K100M, Kollidon® vinyl acetate 64 (VA 64)/17PF/30, were used as a release modulating tool to control the drug release from 3D printed sustained release tablets. Ibuprofen (as the model drug) and ethyl cellulose (as the polymeric matrix), along with various release modifiers, were blended and extruded into filaments through a twin-screw extruder. Then these filaments were printed into cylindrical tablets through FDM 3DP technique and their surface morphology, thermal stability, solid-state, mechanical properties, dose accuracy and drug release behaviors were investigated. The solid-state analysis of 3D printed tablets exhibited the amorphous nature of the drug dispersed in the polymer matrices. Although all these prepared filaments could be successfully printed without failing during the FDM 3DP process, the mechanical characterization showed that the filament stiffness and brittleness could be adjusted significantly by changing the type of release modifiers. Moreover, in vitro drug release studies revealed that the drug release could simply be controlled over 24 h by only changing the type of release modifiers. All ibuprofen (IBP) loaded 3D printed tablets with ethyl cellulose (EC) matrix, especially with PEG as the release modifier, showed great potential in releasing IBP in a zero-order reaction. In conclusion, all the results illustrated that the HME/FDM approach and optimized formulation compositions can be an attractive option for the development of pharmaceutical tablets and implants where adjustable drug release patterns are necessary.

Arshad, Muhammad Sohail, Aleema Tehreem Zahra, Saman Zafar, Hussain Zaman, Ambreen Akhtar, Muhammad Mazhar Ayaz, Israfil Kucuk, Mohammed Maniruzzaman, Ming-Wei Chang, and Zeeshan Ahmad. (2021) 2021. “Antibiofilm Effects of Macrolide Loaded Microneedle Patches: Prospects in Healing Infected Wounds.”. Pharmaceutical Research 38 (1): 165-77. https://doi.org/10.1007/s11095-021-02995-0.

AIM: The aim of this study was to fabricate polymeric microneedles, loaded with macrolides (erythromycin, azithromycin), using hyaluronic acid and polyvinyl pyrollidone.

METHODS: These microneedles were fabricated using a vacuum micromolding technique. The integrity of the microneedle patches was studied by recording their morphologic features, folding endurance, swelling and micro-piercing. Physicochemical characteristics were studied by differential scanning calorimetry, thermogravimetric analysis and fourier transform infrared spectroscopy. In-vitro drug release, antibiofilm and effect of microneedle patch on wound healing were also studied to confirm the efficacy of the formulations.

RESULTS: Formulated patches displayed acceptable folding endurance (>100) and uniform distribution of microneedles (10 × 10) that can penetrate parafilm. Differential scanning calorimetry results depict a decrease in the crystallinity of macrolides following their incorporation in to a polymer matrix. Percentage release of azithromycin and erythromycin from the polymeric patch formulations (over 30 min) was 90% and 63% respectively. Broadly, the zone of bacterial growth inhibition follows the same order for Staphylococcus aureus, Escherichia coli and Salmonella enterica. After 5 days of treatment with azithromycin patches, the wound healing was complete and skin structure (e.g. hair follicles and dermis) was regenerated.

CONCLUSION: It was concluded that azithromycin loaded microneedle patches can be used to treat biofilms in the infected wounds.

Thakkar, Rishi, Miguel O Jara, Steve Swinnea, Amit R Pillai, and Mohammed Maniruzzaman. (2021) 2021. “Impact of Laser Speed and Drug Particle Size on Selective Laser Sintering 3D Printing of Amorphous Solid Dispersions.”. Pharmaceutics 13 (8). https://doi.org/10.3390/pharmaceutics13081149.

This research demonstrates the influence of laser speed and the drug particle size on the manufacturing of amorphous solid dispersions (ASD) and dosage forms thereof using selective laser sintering 3-dimensional (3D) printing. One-step manufacturing of ASD is possible using selective laser sintering 3D printing processes, however, the mechanism of ASD formation by this process is not completely understood and it requires further investigation. We hypothesize that the mechanism of ASD formation is the diffusion and dissolution of the drug in the polymeric carrier during the selective laser sintering (SLS) process and the drug particle size plays a critical role in the formation of said ASDs as there is no mixing involved in the sintering process. Herein, indomethacin was used as a model drug and introduced into the feedstock (Kollidon® VA64 and Candurin® blend) as either unprocessed drug crystals (particle size > 50 µm) or processed hot-melt extruded granules (DosePlus) with reduced drug particle size (<5 µm). These feedstocks were processed at 50, 75, and 100 mm/s scan speed using SLS 3D printing process. Characterization and performance testing were conducted on these tablets which revealed the amorphous conversion of the drug. Both MANOVA and ANOVA analyses depicted that the laser speed and drug particle size significantly impact the drug's apparent solubility and drug release. This significant difference in performance between formulations is attributed to the difference in the extent of dissolution of the drug in the polymeric matrix, leading to residual crystallinity, which is detrimental to ASD's performance. These results demonstrate the influence of drug particle size on solid-state and performance of 3D printed solid dispersions, and, hence, provide a better understanding of the mechanism and limitations of SLS 3D printing of ASDs and its dosage forms.

Wang, Jiawei, Yu Zhang, Niloofar Heshmati Aghda, Amit Raviraj Pillai, Rishi Thakkar, Ali Nokhodchi, and Mohammed Maniruzzaman. (2021) 2021. “Emerging 3D Printing Technologies for Drug Delivery Devices: Current Status and Future Perspective.”. Advanced Drug Delivery Reviews 174: 294-316. https://doi.org/10.1016/j.addr.2021.04.019.

The 'one-size-fits-all' approach followed by conventional drug delivery platforms often restricts its application in pharmaceutical industry, due to the incapability of adapting to individual pharmacokinetic traits. Driven by the development of additive manufacturing (AM) technology, three-dimensional (3D) printed drug delivery medical devices have gained increasing popularity, which offers key advantages over traditional drug delivery systems. The major benefits include the ability to fabricate 3D structures with customizable design and intricate architecture, and most importantly, ease of personalized medication. Furthermore, the emergence of multi-material printing and four-dimensional (4D) printing integrates the benefits of multiple functional materials, and thus provide widespread opportunities for the advancement of personalized drug delivery devices. Despite the remarkable progress made by AM techniques, concerns related to regulatory issues, scalability and cost-effectiveness remain major hurdles. Herein, we provide an overview on the latest accomplishments in 3D printed drug delivery devices as well as major challenges and future perspectives for AM enabled dosage forms and drug delivery systems.

Thakkar, Rishi, Yu Zhang, Jiaxiang Zhang, and Mohammed Maniruzzaman. (2021) 2021. “Synergistic Application of Twin-Screw Granulation and Selective Laser Sintering 3D Printing for the Development of Pharmaceutical Dosage Forms With Enhanced Dissolution Rates and Physical Properties.”. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E.V 163: 141-56. https://doi.org/10.1016/j.ejpb.2021.03.016.

This study demonstrated the first case of combining a novel continuous granulation technique with powder-bed fusion-based selective laser sintering (SLS) process to enhance the dissolution rate and physical properties of a poorly water-soluble drug. Selective laser sintering and binder jetting 3D printing processes have gained much attention in pharmaceutical dosage form manufacturing in recent times. These powder bed-based 3D printing platforms have been known to face printing and uniformity problems due to the inherent poor flow properties of the pharmaceutical physical mixtures. To address this issue a hot-melt extrusion-based versatile granulation process equipped with a process analytical technology (PAT) tool for the in-line monitoring of critical quality attributes (i.e., solid-state) of indomethacin was developed. The collected granules with enhanced flow properties were mixed with Kollidon® VA64 and a conductive excipient for efficient sintering. These mixtures were further characterized for their bulk properties observing an excellent flow and later subjected to an SLS-3D printing process. The physical mixtures, processed granules, and printed tablets were characterized using conventional as well as advanced solid-state characterizations. These characterizations revealed the amorphous nature of the drug in the processed granules and printed tablets. Further, the in vitro release testing of the tablets with produced granules as a reference standard depicted a notable dissolution advantage (100% drug released in 5 min at >pH 6.8) over the pure drug and the physical mixture. Our developed system known as DosePlus combines innovative continuous granulation and SLS-3D printing process which can potentially improve the physical properties of the bulk drug and formulations in comparison to when used in isolation. This process can further find application in continuous manufacturing of granules and additive manufacturing of pharmaceuticals to produce dosage forms with excellent uniformity and solubility advantage.

Thakkar, Rishi, Daniel A Davis, Robert O Williams, and Mohammed Maniruzzaman. (2021) 2021. “Selective Laser Sintering of a Photosensitive Drug: Impact of Processing and Formulation Parameters on Degradation, Solid State, and Quality of 3D-Printed Dosage Forms.”. Molecular Pharmaceutics 18 (10): 3894-3908. https://doi.org/10.1021/acs.molpharmaceut.1c00557.

This research study utilized a light-sensitive drug, nifedipine (NFD), to understand the impact of processing parameters and formulation composition on drug degradation, crystallinity, and quality attributes (dimensions, hardness, disintegration time) of selective laser sintering (SLS)-based three-dimensional (3D)-printed dosage forms. Visible lasers with a wavelength around 455 nm are one of the laser sources used for selective laser sintering (SLS) processes, and some drugs such as nifedipine tend to absorb radiation at varying intensities around this wavelength. This phenomenon may lead to chemical degradation and solid-state transformation, which was assessed for nifedipine in formulations with varying amounts of vinyl pyrrolidone-vinyl acetate copolymer (Kollidon VA 64) and potassium aluminum silicate-based pearlescent pigment (Candurin) processed under different SLS conditions in the presented work. After preliminary screening, Candurin, surface temperature (ST), and laser speed (LS) were identified as the significant independent variables. Further, using the identified independent variables, a 17-run, randomized, Box-Behnken design was developed to understand the correlation trends and quantify the impact on degradation (%), crystallinity, and quality attributes (dimensions, hardness, disintegration time) employing qualitative and quantitative analytical tools. The design of experiments (DoEs) and statistical analysis observed that LS and Candurin (wt %) had a strong negative correlation on drug degradation, hardness, and weight, whereas ST had a strong positive correlation with drug degradation, amorphous conversion, and hardness of the 3D-printed dosage form. From this study, it can be concluded that formulation and processing parameters have a critical impact on stability and performance; hence, these parameters should be evaluated and optimized before exposing light-sensitive drugs to the SLS processes.

Zhang, Jiaxiang, Rishi Thakkar, Vineet R Kulkarni, Yu Zhang, Anqi Lu, and Mohammed Maniruzzaman. (2021) 2021. “Investigation of the Fused Deposition Modeling Additive Manufacturing I: Influence of Process Temperature on the Quality and Crystallinity of the Dosage Forms.”. AAPS PharmSciTech 22 (8): 258. https://doi.org/10.1208/s12249-021-02094-8.

With the advancements in cutting-edge technologies and rapid development of medical sciences, patient-focused drug development (PFDD) through additive manufacturing (AM) processes is gathering more interest in the pharmaceutical area than ever. Hence, there is an urgent need for researchers to comprehensively understand the influence of three-dimensional design on the development of novel drug delivery systems (DDSs). For this research, fused deposition modeling (FDM) 3D printing was investigated, and phenytoin (PHT) was selected as the model drug. The primary purpose of the current investigation was to understand the influence of AM process on the pharmaceutical products' quality. A series of comparative studies, including morphology, solid-state analysis, and in vitro drug release studies between additive manufactured filaments (printlets) and extruded filaments, were conducted. The FDM-based AM showed adequate reproducibility by manufacturing printlets with consistent qualities; however, the model slicing orientation significantly affected the print qualities. The texture analysis studies showed that the mechanical properties (breaking behavior) of additive manufactured printlets were varied from the extruded filaments. Additionally, the higher printing temperature also influenced the solid state of the drug where the process assisted in PHT's amorphization in the printed products, which further affected their mechanical properties and in vitro drug release performances. The current investigation illustrated that the AM process would change the printed objects' macrostructure over the conventional products, and the printing temperature and slicing will significantly affect the printing process and product qualities.

Zhang, Jiaxiang, Anqi Lu, Rishi Thakkar, Yu Zhang, and Mohammed Maniruzzaman. (2021) 2021. “Development and Evaluation of Amorphous Oral Thin Films Using Solvent-Free Processes: Comparison Between 3D Printing and Hot-Melt Extrusion Technologies.”. Pharmaceutics 13 (10). https://doi.org/10.3390/pharmaceutics13101613.

Conventional oral dosage forms may not always be optimal especially for those patients suffering from dysphasia or difficulty swallowing. Development of suitable oral thin films (OTFs), therefore, can be an excellent alternative to conventional dosage forms for these patient groups. Hence, the main objective of the current investigation is to develop oral thin film (OTF) formulations using novel solvent-free approaches, including additive manufacturing (AM), hot-melt extrusion, and melt casting. AM, popularly recognized as 3D printing, has been widely utilized for on-demand and personalized formulation development in the pharmaceutical industry. Additionally, in general active pharmaceutical ingredients (APIs) are dissolved or dispersed in polymeric matrices to form amorphous solid dispersions (ASDs). In this study, acetaminophen (APAP) was selected as the model drug, and Klucel™ hydroxypropyl cellulose (HPC) E5 and Soluplus® were used as carrier matrices to form the OTFs. Amorphous OTFs were successfully manufactured by hot-melt extrusion and 3D printing technologies followed by comprehensive studies on the physico-chemical properties of the drug and developed OTFs. Advanced physico-chemical characterizations revealed the presence of amorphous drug in both HME and 3D printed films whereas some crystalline traces were visible in solvent and melt cast films. Moreover, advanced surface analysis conducted by Raman mapping confirmed a more homogenous distribution of amorphous drugs in 3D printed films compared to those prepared by other methods. A series of mathematical models were also used to describe drug release mechanisms from the developed OTFs. Moreover, the in vitro dissolution studies of the 3D printed films demonstrated an improved drug release performance compared to the melt cast or extruded films. This study suggested that HME combined with 3D printing can potentially improve the physical properties of formulations and produce OTFs with preferred qualities such as faster dissolution rate of drugs.